THE COUNCIL

Transforming Energy Sector Infrastructure *An Indian Perspective*

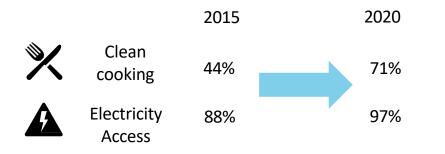
Pallavi Das

Geneva, Switzerland

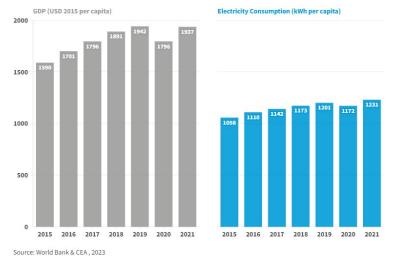
Global Methane Initiative 20 March 2024

© Council on Energy, Environment and Water, 2024

Impacting sustainable development at scale with <u>data</u>, <u>integrated analysis</u>, and <u>strategic</u> outreach


	QUALITY OF LIFE	<u>ENABLERS</u>	200+			
<u>Low-c</u> arbon Economy	<u>Clean</u> Air	Sustainable Finance	Multidisciplinary team			
Energy Transitions	Sustainable Water	Technology Futures	320+ Peer-reviewed publications			
Power Markets	Sustainable Food Systems	<u>Circul</u> ar Economy	160+ Instances of increased data transparency 460+			
Industrial Sustainability	Sustainable Cooling	Climate Resilience				
Sustainable Livelihoods	Sustainable Mobility	International Cooperation	Roundtables & conferences			
			22 Indian states engaged			
	110+ Bilateral & multilateral initiatives promoted					
CEEW Centre for Energy Finance	Powering Livelihoods Emerg	ing Economies UP State Office				
2			CEEW			

THE COUNCIL


Current status of the energy system in India

Current Status: Access to energy in India

GDP & electricity consumption per capita

- There has been increased access to clean cooking and electricity within the country
- Two primary reasons for this increase: policy support through Saubhagya and UJJWALA and an increase in incomes
 - GDP per capita (constant) increased by 22% while electricity consumption per capita increased by 16% in the last 6 years
- US: 12,613 kWh/ capita
- China: 5,845 kWh/capita
- UK: 4,266 kWh/ capita

Source: IRIS CEEW 2020 and IEA 2021

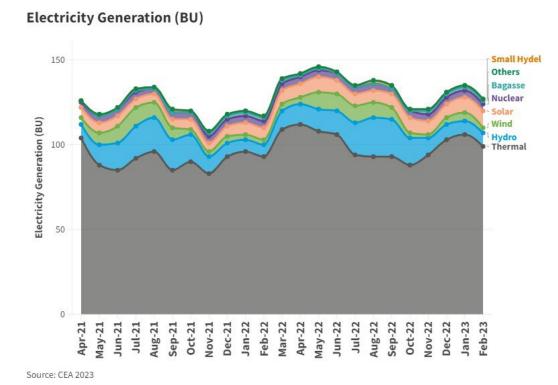
Energy Infrastructure: Renewable energy capacity up by 60% in the last 4 years

Installed capacity (GW) Mar-19 Mar-23 Gas Gas 25 Hydro 47 Hydro 45 Coal 205 357 GW 410 GW Coal 201 RES 78 **RES** 125

About 30% of installed capacity is renewable energy compared to 21% 4 years back.

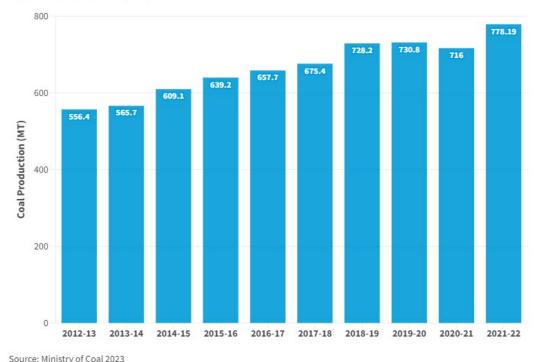
Energy Infrastructure: Solar is leading the way in renewable energy installations

RES (incl. hydro) installed capacity (GW)


Sola	r												66.7	
Hyd	ro								46					
Wind	ł							42.6						
Bion	nass	10						42.0						
	ll hydi .9	ro												
Wast	te to E	nergy												
0	5	10	15	20	25	30	35	40	45	50	55	60	65	70
							GW							

Together RES (incl. hydro) and nuclear make up about **43.6%** of total installed capacity

https://powermin.gov.in/en/content/power-sector-glance-all-india

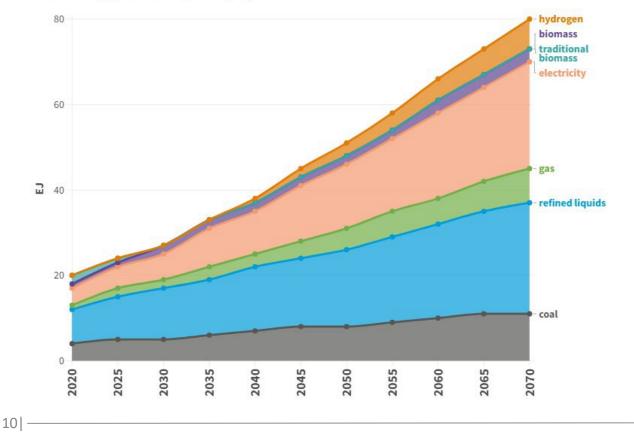

Energy generation: Coal dominates energy generation in absolute terms, yet its share has been falling

- April 21 about 83% of total generation from coal by February 2023 about 78% of total generation from coal
- RE generation is lower as their availability is intermittent leading to low capacity utilization factors

Energy Security: Steady growth in domestic coal production over the years

Coal Production (MT)

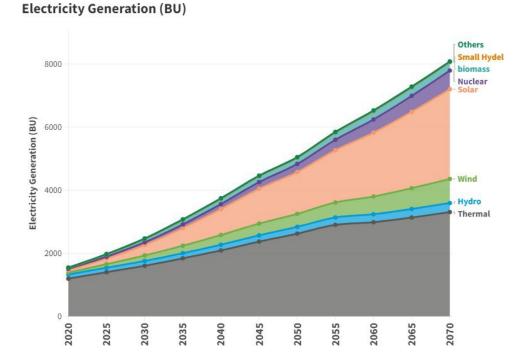
Centre says domestic coal production to touch 1.31 billion tonnes by FY25 and 1.5 billion tonnes by FY30


https://indianexpress.com/article/business/economy/india-coal-production-2023-2024-8464233/

Future projections for India BAU and NZ scenarios

Future trends in BAU: Fossil fuels continue to remain in the final energy

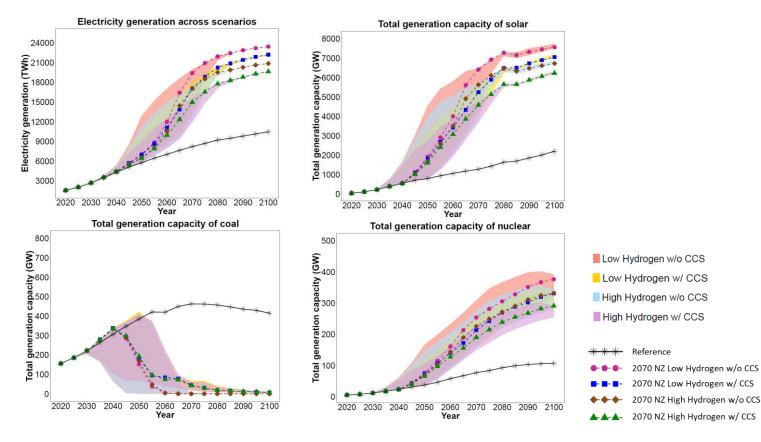
Final Energy Consumption (EJ)


In a BAU scenario

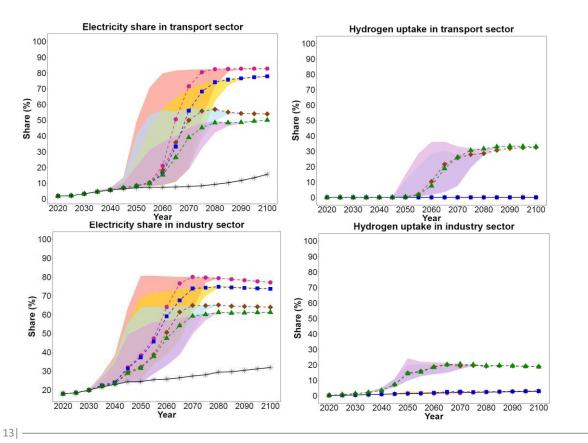
- Electricity increases by 6.25 times between 2020 and 2070
- Overall final energy increases by 3.6 times

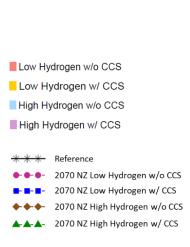
Author Analysis

Future trends in BAU: Coal dominates energy generation in absolute terms into the future


In a BAU scenario

- Coal generation triples between 2020 and 2070 while solar generation increases by 39 times.
- Overall electricity generation increases by 5 times




Author Analysis

Future Trends in NZ: Transitions in the electricity sector are going to be massive

Future Trends in NZ: Transport and industrial sector will also need to redefine their energy architectures

Source: Chaturvedi and Malyan 2021

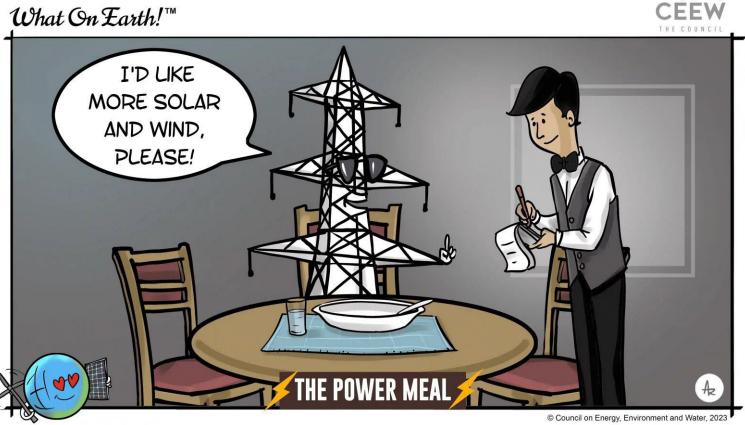
Transforming the energy infrastructure

Energy Efficiency: Low hanging fruits

- Reduction in AT&C losses currently AT&C stands at 20.81%
 - Smart meters Better metering, billing and payment efficiencies. About 9.7 million smart meters have been installed so far, with a target of installing 250 million smart meters by 2025
 - Grid modernisation Planning the grid infrastructure with RE evacuation
- Better Load Management
 - **Demand Shifting** Power demand peaks in the evening when solar power is not available
 - Time of Day Pricing Differential tariff based on time of day to reflect true power purchase costs utilities
- Energy efficient appliances
 - Star-rating for consumer awareness and diffusion of efficient appliances. This has seen great success in India

Energy Storage: Better integration of renewable energy

- Pumped hydro storage (PHS)
 - Potential of 103 GW but currently only 4.7 GW
 - Guidelines issued for PHS in 2023
 - Environmental impacts and clearance are the largest challenges for PHS
- Battery Energy Storage System (BESS)
 - Target to have 4,000 MWh storage facility by FY 31
 - Support through Viability Gap Funding for BESS


New technologies: Integrating new technologies

- Offshore wind power
 - 71 GW of offshore wind potential in India off the coast of Gujarat and Tamil Nadu which have higher CUF factors
 - Challenges in setting up plants and laying grid infrastructure
- Green hydrogen
 - Launched the national mission of green hydrogen
 - Green hydrogen blending in gas pipelines
 - Target to produce 5 MMT per annum, 96 billion USD and 600 thousand jobs by 2030

7 | -

Thank you!

